

SWE = 4.77 * (18H - 37H)

MICROWAVE EMISSION OF THE LAND SURFACE

Mel Sandells -- Ian Davenport -- Debbie Clifford

Microwave Emission

I = p

Brightness temperature

Horizontal vs Vertical Polarization

Frequency Choice

Atmospheric Transmission Windows:

- 25-50 GHz
- 70-115 GHz
- 125-160 GHz
- 200-250 GHz

Ulaby, Moore, Fung (1981-1986)

Fig. 17.11 Atmospheric transmissivity as characterized by different surface temperatures T_0 and integrated water-vapor content M_v (from Grody, 1976).

Land Surface Emissivity

Ulaby, Moore and Fung (1986)

Penetration Depth

Njoku (1995). ESA / NASA International Workshop

SWE = 4.77 * (18H - 37H)

REMOTE SENSING OF SOIL MOISTURE

Dominant Environmental Controls on Net Primary Productivity

SMOS Science Objectives:

- globally monitor surface soil moisture over land surfaces
- globally monitor surface salinity over the oceans, and
- improve the characterisation of ice and snow covered surfaces.

Soil Moisture Retrieval

$$T_B = \mathcal{O}_{soil} T_{soil}$$

The emissivity of the soil \mathcal{E}_{soil} depends on...

- 1. The look angle α
- 2. The polarisation of the radiation

3. The soil's dielectric constant, which depends on the soil moisture and texture.

Radiative transfer theory

- Pure absorption: $dI = -k_a \Gamma I \, ds$
- Scattering:
 - Source function $\hat{A} = \frac{emission}{absorption}$
 - Single-scatter albedo: $\oint p(\cos Q) \frac{dW^{\ddagger}}{4p} = W_0 \pounds 1$
- Radiative transfer equation:

$$dI = -k_a \Gamma I \, ds + k_a \Gamma \dot{A} \, ds$$

Formal solution:

s¢

$$I(s) = I(0)e^{-t(s,0)} + \overset{s}{\overset{o}{0}} A(s^{\mathfrak{c}})e^{-t(s,s^{\mathfrak{c}})}K_{a} \Gamma ds^{\mathfrak{c}}$$
$$t(s,s^{\mathfrak{c}}) = \overset{s}{\overset{o}{0}} K_{a} \Gamma ds$$

Radiative Transfer Theory Approximation

- Geometry
 - Two-stream
 - Discrete Ordinates
- Scattering medium
 - Spherical particles
 - Size distribution
 - Rayleigh scattering if size << wavelength
 - Coherent vs incoherent
 - Multiple scattering

$$\hat{\mathbf{0}} p(\cos \mathbf{O}) \frac{d \mathbf{W}}{4 \mathbf{P}} = \mathbf{W}_0 \in \mathbf{I}$$

Radiative Transfer Theory Approximation

• Single scatter albedo

$$\hat{\mathbf{0}} p(\cos \mathbf{O}) \frac{d \mathbf{W}}{4p} = \mathbf{W}_0 \in \mathbf{I}$$

Components of the Tau-Omega model

Generate brightness temperature curves for a

"known" conditions

Compare with observations

Heterogeneity - SMOS resolution 50km

Vegetation density

Error Budget Example: Heterogeneity in Vegetation

• For a simple combination of bare soil and vegetation, assuming a single land cover type in the retrieval:

Substantial error reduction with a model elaboration retrieval of two different vegetation types and their relative proportions.

For a scene with 7 different vegetation optical depths, mean error is reduced to 0.1%

Instrument Errors

- Biases
- Long-term drifts
- Cyclical errors
- Random errors

Instrument Noise

- Calibration against hot / cold targets 2-5 days apart
- Non-linear, iterative procedure -> coefficients
- Coefficients relate V to

Instrument Noise

	Derksen et. al (2012)						
	6.9H	19 V	19H	37 V	37H	89 V	89H
Calibrations (n)	15	19	19	19	19	18	18
Cold point RMSE (K)	5.0	3.8	3.8	3.6	3.6	4.7	4.7
Warm pt. calibration RMSE (K)/	1.2	1.3	1.2	1.1	1.2	1.7	1.6
Estimated accuracy (K)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0

SMOS

- Internal
- External
- Calibration strategy

Reading

http://www.cesbio.ups-tlse.fr/SMOS_blog/

RFI

Retrieved Soil Moisture 20120910 20120912 Descending

This situation started 20120822 and still last ! TOTALLY UNACCEPTABLE Almost no soil moisture retrieval in Europe for ascending orbits and dubious for descending

Soil Moisture Active/Passive (SMAP) Mission NASA Workshop Report

NASA SMAP

Expected to launch November, 2014

Radar Frequency: 1.2

Frequency: 1.26 GHz Polarizations: VV, HH, HV

Radiometer

Frequency: 1.41 GHz Polarizations: H, V, U Relative accuracy: 1.5 K

Antenna

Configuration: Conically-scanning reflector Forms 1000 km wide swath Shared by both radar and radiometer Diameter: 6 meters Resolution: 40 km radiometer 1-3 km SAR

SWE = 4.77 * (18H - 37H)

REMOTE SENSING OF SNOW

The basis of the Chang Algorithm

Microwave emission (Tb) vs snow mass (SWE) is derived using the Mie Scattering model

A simple relation is derived from the linear portion of graph (~1m snow)

However, this relation seems sensitive to snow dran diameter.

SWE (depth)

mel

Chang et. al. (1987) Ann. Glaciol. 9: 39-44

What's in a snowpack?

Courtesy Nick

Snow properties: crystals

www.snowcrystals.com

Snow properties: crystals

Wergin et al (1996). J. Microscopy Soc. Am. 2 (3)

Snow microwave emission model

The HUT single-layer snow model predicts how microwaves emitted by the Earth are affected by snow

ATMOSPHERE, mostly transparent

Variables – temperature, density, liquid water content, grain size, salinity.

Includes multiple scattering within the snow layer, scattering and reflectivity via Fresnel equations

$$T_B(d^-, q) = T_B(0^+, q) e^{-(k_e - qk_s)\sec q d}$$
$$+ \frac{k_a T_s}{k_e - qk_s} \left(1 - e^{-(k_e - qk_s)\sec q d}\right)$$

SNOW

GROUND

University of **Reading**

Absorption and Scattering Within Snow

- Sensitive to the snow grain size (and density)
- Scattering mostly in the forward direction (96%)
- Wet snow highly absorptive, near blackbody

Sensitivity of snow mass algorithm to grain size

Snow mass data assimilation system

The future....CoReH20?

- Dual-band SAR (9.65 / 17.25GHz)
- 6am / pm overpass
- Revisit: 3 / 15 days
- Resolution:
 - few 100m
- Launch in 2019?